SELF-REFERENCE IN ARITHMETIC II

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-reference in Arithmetic∗

AGödel sentence is oŸen described as a sentence saying about itself that it is not provable and a Henkin sentence as a sentence stating its own provability. We discuss what it couldmean for a sentence to ascribe to itself a property such as provability or unprovability. e starting point will be the answer Kreisel gave to Henkin’s problem. We describe how the properties of the supposedly self-re...

متن کامل

Self-similar fractals and arithmetic dynamics

‎The concept of self-similarity on subsets of algebraic varieties‎ ‎is defined by considering algebraic endomorphisms of the variety‎ ‎as `similarity' maps‎. ‎Self-similar fractals are subsets of algebraic varieties‎ ‎which can be written as a finite and disjoint union of‎ ‎`similar' copies‎. ‎Fractals provide a framework in which‎, ‎one can‎ ‎unite some results and conjectures in Diophantine g...

متن کامل

Languages with Self-Reference II: Knowledge, Belief, and Modality

Negative results of Montague and Thomason have div erted research in propositional attitudes away from syntactic (‘first-order’) approaches, encouraging modal formalisms instead, especially in representing epistemic notions. We show that modal logics are on no firmer ground than first-order ones when equally endowed with substitutive self-reference. Nonetheless, there may still be remedies, hin...

متن کامل

Arithmetic invariant theory II

2 Lifting results 4 2.1 Pure inner forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Twisting the representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Rational orbits in the twisted representation . . . . . . . . . . . . . . . . . . . . . . . 5 2.4 A cohomological obstruction to lifting invariants . . . . . . . . . . . . . . . ...

متن کامل

Galois Representations in Arithmetic Geometry Ii

The étale cohomology of an algebraic variety defined over the rational number field Q gives rise to an -adic representation of the absolute Galois group GQ of Q. To study such an -adic representation, it is common to investigate its restriction to the decomposition group at each prime number p. The purpose of this article is to survey our knowledge on the restrictions at various primes. When th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Review of Symbolic Logic

سال: 2014

ISSN: 1755-0203,1755-0211

DOI: 10.1017/s175502031400029x